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Abstract .  Using some simple geometries composed solely of interconnecting ‘diai 
monds’, we study the competition between long-range magnetic order and quantum 
fluctuations. Since a four-atom ‘diamond’ is formed from twc+edge sharing triangles, 
a ‘diamond’ is topologically frustrated, and hence magnetic order is energetically less 
favourable than usual. The classical limit yields a ferrimagnetic state with equally 
large ferromagnetic and antiferromagnetic moments. Symptomatic of the topological 
problems, there are some zero energy ‘spin wave’ modes in the classical limit. For 
low-spin systems these low energy modes become excited in the ground state, which 
has none of the properties predicted by the classical solution. For spin f , the ground 
state has only short-range correlations, a broken translational symmetry, and a gap 
to localised spin- 3 excitations, which also have a topological quantum number. 

1. Introduction 

One of the most interesting gaps in our understanding of the behaviour of electronic 
motion in solids, is strong-coupling paramagnetism. The physical materials which ex- 
hibit this behaviour are epitomised by heavy fermions [l] and high-temperature super- 
conductors [2]. It may simply be that the underlying physical cause remains a mystery, 
but there is a more disturbing possibility. The materials are easily modelled by simple 
tight-binding Hamiltonians which include: chemical bonding, short-range Coulomb 
repulsion and Pauli exclusion. These models may well p r e d i c t  the strange behaviour 
associated with these strong-coupling paramagnets. The problem then becomes a 
technical problem of deducing the required behaviour from these simple models. I t  is 
our belief that  all the relevant physics is encapsulated in these simple tight-binding 
models, p r o v i d e d  that  the topology of the connectivity is taken seriously. 

The main difficulty encountered in studying tight-binding Hamiltonians in strong 
coupling limits is that  the low-energy spectrum may bear no resemblence to  the weak- 
coupling solution that we know and understand. Indeed, the first time that this fact 
is usually encountered is in the study of magnetic insulators. One starts out with 
fermions and one expects charged excitations carrying spin half. In fact, a t  low en- 
ergies, these systems have chargeless exitations carrying spin 1 which exhibit bosonic 
properties; the spin waves. For this case it is now understood how this change occurs, 
in terms of a mapping of the original description onto an effective spin interaction at  
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low energies [3]. This idea seems relevant even for the cases of present interest, where 
for one of the atoms in the system the charge degrees of freedom become ‘frozen out’ 
leaving only a residual spin in interaction with its neighbours. Usually the effective 
interaction between spins leads to some form of magnetic coherence at  low tempera- 
tures, and one way to  interpret our problem is that we are asking why no magnetic 
coherence exists in strong-coupling paramagnets. In this article we explore the possi- 
bility that topological frustration might be responsible for the lack of order. We present 
an exact ground state to a two-dimensional quantum mechanical spin half Heisenberg 
model which involves symmetry breaking but exhibits no long-range magnetic phase 
coherence. 

A second crucial aspect of the interesting strong-coupling paramagnets is the ex- 
istence of low-energy charged excitations. Experimental strong-coupling paramagnets 
carry a current at low temperatures, and some are even superconducting. It is gen- 
erally believed that the charge motion is in some way linked to the spin fluctuations 
and we will employ a model where the charge motion requires a spin interaction; the 
t-J model. 

The charge degrees of freedom show two puzzling phenomena of fundamental in- 
terest; Firstly, at  very low temperature but before long-range coherence intervenes, 
the effective mass of the charge carriers is orders of magnitude larger than that found 
in weak-coupling systems. This is known as ‘heavy-fermion’ behaviour. Secondly, 
at  even lower temperatures, the long-range coherence which sometimes occurs is su- 
perconductivity. Superconductivity involves a gap in the spectrum and is usually 
associated with charged bosons, normally Cooper pairs. These intriguing properties 
of strong-coupling paramagnets have led to some interesting conjectures for the char- 
acteristics of the energy excitations in such systems. The characteristics of interest 
are: firstly the statistics of the excitations, bosons or fermions or even something 
worse, secondly the quantum numbers of the excitations, namely the charge and spin 
of a single excitation and thirdly whether or not the relevant excitation spectrum has 
a gap.  As well as the weak-coupling assignation of gapless spin-4 charge e fermions 
and the spin fluctuation assignation of gapless spin-1 chargeless bosons, there have 
been recent conjectures of gapless spin- f chargeless fermions, ‘spinons’, and spin zero 
charge e bosons, ‘holons’ [4]. These excitations are contraversial and the only rele- 
vant exactly solvable models that we can analyse are the one-dimensional Hubbard 
chain [5] and the more recent but very similar supersymmetric t - J  model [6] .  For 
this model we find gapless spin-$ chargeless bosons and spin zero charge e fermions, 
‘spinless fermions’, although actually in the strict limit the statistics of the charge car- 
riers is indeterminate. There is no evidence of any long-range order, other than power 
law decay of ‘NCel’ correlation functions. These power law correlations are, however, 
strong enough to  support the gapless ‘spin waves’, and this suggests that the system 
is exhibiting a form of latent magnetism and not something more exotic. Attention 
should be drawn however to the possible interpretations of the quantum mechanical 
excitations [7], which are not necessarily classical spin waves. 

In this article we will present an exactly solvable quantum mechanical t-J model 
which exhibits only short-range spin correlations. The lack of magnetic coherence 
is enforced by our choice of geometry, which is topologically frustrated and rather 
contrived. Although the particular geometry considered is unlikely to be realised in 
nature, we feel that since it belongs to the class of strong-coupling paramagnets, it 
is quite likely to yield the generic answers to the fundamental characteristics of the 
low-energy excitations. The statistics and quantum numbers of these excitations are 
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the objectives of this article. 
The one-dimensional Hubbard chain and our own solvable one-dimensional ‘saw- 

tooth’ topology [8] suffer from the usual one-dimensional ailments caused by the viru- 
lence of quantum fluctuations in low dimensional systems. Another distressing aspect 
of solvable one-dimensional problems is the fact that particles must be brought to- 
gether to  be exchanged and this leads to the previously mentioned difficulty in deciding 
the statistics of the excitations. These problems are so worrying that it is not unnat- 
ural to consider one-dimensional problems as pathological. One of the great strengths 
of the model considered in this article is that it is two-dimensional and is therefore 
only plagued by the lesser two-dimensional pathologies. 

The model itself is built from the ideas presented in our earlier analysis of the ‘di- 
amond’ topology [8]. The previous analysis of the Heisenberg model on this topology, 
which used finite size scaling to suggest that the ground state is that of an infinite chain 
of alternating spin and spin-1 atoms, is re-examined with larger clusters. In section 2 
we use our numerical work to deduce the Heisenberg ground states of the ‘diamond’ 
connectivities depicted in figure 1 ; the one-dimensional chain and the two-dimensional 
honeycomb. We also deduce the existance of a g a p  in the spin excitation spectrum to 
a localised spin-$ ‘spinon’. A little time is then spent on the topological properties of 
this excitation which displays the properties of a ‘soliton’. In section 3 we conclude 
our investigations, leaving the charge degrees of freedom to a future publication. 

lbl 

Figure 1. The two geometries central to the article. The vertices represent atoms 
and the lines represent equal Heisenberg interactions. ( a )  The linear chain; ( b )  the 
honeycomb lattice. 
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2. Exact quantum mechanical Heisenberg ground states 

The Heisenberg model is that of simple isotropic interactions between spins situated 
on a lattice. For a system dominated by superexchange, namely where the dominant 
spin interactions are caused by motion of the electrons making up the localised spins 
themselves, the interactions are short ranged and we will assume that only nearest 
neighbour interactions are non-zero. The Hamiltonian is 

si -si = S(S + 1)  (2 . lb)  

where J is the interaction strength, [ij] denote the relevant bonds (for our purpose the 
connections in figure l) ,  the square of the total spin is assumed fixed (the constraints of 
(2 . lb))  and Si are quantum mechanical operators satisfying the commutation relations 

[sp,s,p] = 6 i j c = w ;  (2 . l c )  

The connectivities of interest to us are depicted in figure 1 and are composed 
of interconnecting ‘diamonds’. There are various ways to arrange the terms for our 
geometry that demonstrate different ways to study the problem. We will use i to 
denote the atoms on the longer diagonal of the diamonds, j to denote the atoms on 
the shorter diagonal, SE = Sjl + Sja to denote the total spin of the pair of spins which 
make up the bond on the shorter diagonal, S, = SE + Si to denote the total spin 
of the triangle containing the bond B and the site i and finally S, = SE + Si + Si, 
to denote the total spin of the diamond containing the bond B and the sites i and i’. 
The different ways of writing the Hamiltonian are 

(2.4) 

where No is the number of diamonds, [ij] denote nearest neighbours on the edge of a 
diamond, [iB] denote nearest neighbour sites and bonds and [ii’] denote all the long 
diagonals of the diamonds which are not bonds in the model. 
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Our first observation is that (2.3) shows that [SE S E ,  HI = 0 for each bond and 
so the total spin of each bond is conserved and the ground state may be chosen to  be 
simultaneously an eigenstate of each total bond spin. It is not clear which value of total 
spin each bond should have. Equation (2.3) suggests a small bond spin, whereas (2.4) 
suggests a large bond spin should be preferred. In fact, each breakdown indicates 
that there is a competition at  work. In equation (2 .3) ,  the first term is minimised by 
making SE large and antiparallel to  Si whereas the second term is minimised when 
the bond spin vanishes. In equation (2.4),  it is clear that high bond spins and low 
triangle spins are preferred, but since each triangle is composed of one bond spin and 
one other spin, these constraints are not independent. Equation (2.5) is the easiest to  
think about and yields the classical solution to the problem. 

2.1.  The classical limit 

The classical limit is that of large spin, S H W. In this limit the components of the 
spin commute to  leading order, since the commutator on the left-hand side of ( 2 . 1 ~ )  
is O(S),  one order of S less than the right hand side. All the spins become conserved 
quantities and the problem reduces to finding their preferred orientations. Each term 
in (2.5) can be simultaneously minimised, if we let all the Si be parallel and let the SE 
be maximal and antiparallel to  the Si. All the S, then vanish and the second term 
disappears, while the first term is clearly minimised when Si are parallel. The classical 
ground state energy is E = - 3 N D J s 2  and the ground state has both long-range Ne'el 
order and long-range ferromagnetism; namely ferrimagnetism. 

It is also possible to determine the low-energy excitations in the classical limit; the 
spin waves. Employing the Holstein-Primakoff transformation to first order, we find 

H = - 3 N ~ J s ~ + a J s z ~  C b T b i  + 2 J S x b L b B  - h J S x [ b l b L  + bBbi] (2 .6)  
i B [{BI 

where ZB is the number of bonds neighbouring an i-site, br is a bosonic operator 
creating a spin fluctuation on an i-site and bL = ( l /&)(bJl  + b j 2 )  is a bosonic operator 
creating a spin fluctuation on a bond direction B. 

The spectra for the two cases of figure 1 are 

E, = J S (  d [ 5  - 4 cos ak] rt 1) 

for the chain of diamonds and 

(2.7a) 

(2.7b) 

where 

( 2 . 7 ~ )  

for the honeycomb of diamonds. These spectra are depicted along restricted di- 
rections in figure 2. As well as the excitations presented, there are the operators 
b L  = ( l /&) (b j l  - b j p )  which correspond to a drop in total bond spin. At the order 
we are analysing, these excitations have zero energy, and they only achieve 'dispersion' 
at higher orders in 1 / S .  It is these modes that play a rather different role in the spin-9 
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Figure 2. The spin wave spectra for the classical ferrimagnetic ground state of our 
two geometries. (a) the linear chain; ( b )  the honeycomb lattice. 

problem. The simple picture presented, of long-range magnetic order combined with 
gapless bosonic excitations, the spin waves, is the usual picture for magnetism. This 
picture is even being used for the spin-$ square lattice, where long-range NCel order is 
thought to  survive the inclusion of strong quantum fluctuations. We will later go on 
to solve the spin-4 version of these diamond geometries and show that their character 
is quite different from this classical limit. 

In the classical limit, the spins have fixed directions and fluctuations in direction 
make up the excitation spectrum: the spin waves. For smaller spin magnitudes, the 
effects of quantumfluctuations are present even in the ground state: zero-point motion. 
The picture that is generally believed, is that the directions found in the classical limit 
survive the inclusion of quantum mechanics on average. The expectation value of the 
spin (Si) is expected to be parallel to the classical direction but reduced in length 
to take account of the configurations. where the spin direction fluctuates. Even for 
spin 4, where the fluctuations are huge, involving a complete reversal of direction, the 
residual moment is still large; being about 2 the maximum for the two-dimensional 
square lattice for example. The long-range order is thought to support spin waves and 
the basic physical picture is that of the classical limit with only minor modifications. 

Our interest is in systems where the energy gain from long-range antiferromagnetic 
order is weakened by topological frustration. In some systems the quantum fluctua- 
tions are so strong that the long-range order is completely lost. For such systems we 
may ask: what replaces the long-range order and what is the excitation spectrum? 

As well as in topologically frustrated systems, long-range order is weakened in low 
dimensional systems. In one dimension, the quantum fluctuations destroy the long- 
range order, but there are residual long-range spin-spin correlations. Although the 
long-range order has disappeared, power law decay of the spin-spin correlations are 
sufficient to support ‘spin wave’-like excitations and the overall physical picture is not 
dissimilar to  the classical limit. We believe that the effects of topological frustration 
are quite different and do not support long-range correlations. We believe that the 
model presented in this article is more representative of the behaviour to  be expected 
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in frustrated antiferromagnetic topologies such as the triangular lattice and the face- 
centred cubic (FCC) lattice, where the basic building block is the triangle. 

For our diamond connectivities, it is the fluctuations in the length of the bond 
spins on the short diagonal of the diamonds which become active in the ground state. 
In the classical limit these modes are at  zero energy, but for low-spin systems these 
modes become excited in the ground state. 

2.2. A soluble l imit  with some ferromagnetic bonds 

Although our main concern is with antiferromagnetic coupling, we can gain some 
insight into certain elements of the problem by studying the case where most of the 
bonds are ferromagnetic. The case of some interest is when all but the bonds on the 
short diagonal are ferromagnetic, because this system is totally solvable and shows 
some of the characteristics of the system with antiferromagnetic coupling. 

For this problem the various representations of the Hamiltonian are 

(2 .10)  

where once again the bond spins SE - SE are conserved quantities. The classical limit 
is deduced from (2.11) to be a saturated ferromagnet, since each term is indepen- 
dently optimised. Once again we can determine the spin waves from the quadratic 
Hamiltonian 

H = - 3 N D J S 2  + 2 J s z B  C b / b i  + 2 J S C b f , b B  - h J S C [ b / b ,  + bf ,b i ]  (2 .12)  
i B [iBI 

The spectra for the two cases of figure 1 are 

Ek = J S ( 3  f d[5 + 4 cos ak]) ( 2 . 1 3 ~ )  

for the chain of diamonds and 

Ek = 2 J S  Ek = J S ( 4  f d m )  (2.13b) 
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Figure 3. The spin wave spectra for the classical ferromagnetic ground state of our 
two geometries when all the bonds connecting long diagonal sites to short diagonal 
sites are turned ferromagnetic. (a) The linear chain; ( b )  the honeycomb lattice. 

for the honeycomb of diamonds, depicted in figure 3.  
The fact which leads to  insight into the system with antiferromagnetic coupling, is 

that the excitations which reduce the bond spins, namely $ 2 3 ,  remain at zero energy. 
This can be attributed to the fact that the triangles remain topologically frustrated 
when the two bond signs are reversed, and these soft modes correspond to the expected 
degeneracy. The present problem with ferromagnetic bonds is exactly solvable for all  
possible values of the spins, and suggests the effect to be expected from the soft modes 
at low spin. 

The fact which allows the quantum mechanical ground-state solution is that 
Heisenberg ferromagnets do not suffer from quantum fluctuations and have fully satu- 
rated moments. The first term in (2.9) may be optimised by ferromagnetically aligning 
all the relevant spins, both Si and SE, and since S, . SE is a conserved quantity, the 
energy of this ferromagnetic state is simply 

(2.14) 

where SE - SE = S E ( S E  + 1) and SE takes only integer values. The second term 
is positive definite for integer values of SE and vanishes, yielding the ground state, 
when either SE = 2s or 2s - 1. The zero energy soft modes are manifested in this 
ground state degeneracy and may be expected also in the case of real interest with 
antiferromagnetic coupling. From spin 1 through to spin 00 (the classical limit), the 
system has long-range ferromagnetic order, but spin holds a privileged position, 
since long-range order is not necessary. 

For spin !j there are only two possible values of each bond spin, S, = 0 , l .  A 
ground state is obtained by either choice for each diamond, provided that the triplet 
bonds occur in diamonds with saturated ferromagnetism. It is important to under- 
stand the role of singlet bonds in this analysis; a singlet bond spin is locally an eigen- 
state of al l  the bonds in the relevant diamond. When a bond spin is singlet, the bonds 
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on the diamond become irrelevant and, further, the two spins on the long diagonal 
are independently free to point in whatever direction the rest of the diamonds want 
them to. The class of ground states is now fairly easy to  describe; Any configuration 
of singlet bond spins mixed with triplet bond spins leads to a ground state. Given a 
configuration of singlet bond spins, the remaining spins split into clusters for which 
each spin is connected to each other spin in the cluster, by a path of bonds which 
does not pass across a singlet bond. Each cluster has saturated ferromagnetism in a 
ground state, but each cluster is independently free to point in any direction. It is 
this breakup into clusters that can kill the long-range order. One such ground state 
has all bond spins singlet, and then all the long diagonal spins are independently free 
to point in any direction. A very similar situation pertains to the spin-$ limit of the 
system with antiferromagnetic coupling that we will now move on to. 

2.3. Antiferromagnetic coupling for the linear chain 

Although the topological frustration is similar for the ferromagnetically and antifer- 
romagnetically coupled systems, there is a crucial difference which complicates the 
antiferromagnetic case. For a ferromagnet, the Heisenberg interaction yields satu- 
rated moments and there are no residual quantum fluctuations in the ground state. 
For antiferromagnets, quantum fluctuations can be strong and a low-spin state is likely 
to be stabilised from amongst the degeneracy found in the ferromagnetic case. Two 
important types of coherence are present in the classical limit: both ferromagnetism 
and antiferromagnetism. The quantum fluctuations will affect these correlations in 
different ways, so both types of correlations must be studied. 

Quantum fluctuations in antiferromagnets may be understood as neighbouring 
spins exchanging spin quanta. Since Si - Sj conserves the total spin of the pair of 
spins involved, a quantum fluctuation involves only a change in quantisation direction 
for the total spin of the pair; a rotation of the local quantisation direction. Long-range 
coherence is lost when it is preferable for the system to explore local orientations in- 
dependently from more distant spins. One would naively expect quantum fluctuations 
to prefer low spin locally, and indeed this is precisely what is found. For our own case, 
we might expect the quantum fluctuations to stabilise a low-spin state from amongst 
the degenerate ground states found in our study of the ferromagnetic problem. 

Now let us consider the case of spin-; atoms on a diamond geometry interacting 
via the antiferromagnetic Heisenberg model. The fact which allows a solution, is that 
diamonds with singlet bond spins locally disconnect the spins on the long diagonal of 
the relevant diamond, leaving them uncorrelated. If sufficient bonds are singlet in the 
ground state, then the remaining spins may become disconnected into clusters and 
these small clusters may be exactly solved yielding the ground state. The difficulty is 
to show that a disconnected solution is relatively stable, and the only way we have so 
far discovered to  demonstrate this is by numerical solutions of clusters, combined with 
finite-size scaling to show that the infinite disconnected clusters are higher in energy 
than the connected clusters. 

The one-dimensional chain of diamonds is our first concern and yields the ideas 
applicable to  the two-dimensional case. Clusters are simply finite numbers of diamonds 
connected in chain segments. We have solved numerically all segments which involve 
up to eight diamonds using the Lanczos algorithm, and the results are presented in 
table 1. Systems with more than 25 atoms are too large to be easily solved, and 
do not yield sufficient new insight to be worth tackling. The ground state may be 
deduced from figure 4 .  Extrapolating the energy per diamond for the infinite chain of 
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Table 1. Tabulated ground state energies and sublattice magnetisations for our 
cluster calculations with free boundary conditions. The excitations of the true ground 
state with alternating spin4 and spin-1 bond spins are composed of regions of the 
chain with precisely these states. 

Total Sublattice Sublattice Ground-state 
N D  spin spin squared spin squared energy 

1 
1 
1 

2 
2 

3 
3 

4 
4 
4 

5 
5 
5 

6 
6 
6 

7 
7 
7 
7 
7 
7 

8 
8 
8 
8 
8 
8 

2.0000 

2.0000 

3.2821 
3.0380 

4.6457 
3.8964 

6.1386 
4.9044 
5.4678 

7.7926 
6.1066 
5.1222 

9.6168 
7.5090 
6.1781 

11.6122 
9.1035 
7.4063 
9.6746 
6.5364 
7.5460 

13.7779 
10.8830 
8.8146 

11.4409 
7.5810 
9.0268 

1 .0000 

1 .0000 

5.3590 
1.5434 

9.7874 
3.8964 

15.3342 
6.8774 
7.4563 

22.0938 
11.0883 
5.1222 

30.1007 
16.4323 
8.0244 

39.3615 
23.0519 
12.0966 
24.21 62 
6.5364 

12.2392 

49.8692 
30.9468 
17.4172 
32.1610 
9.3029 

17.7950 

-1.7500 
-0.7500 
-0.7500 

- 2 3815 
-1.7728 

-4.0692 
-3.5906 

- 5.2705 
-4.9634 
-4.5181 

-6.4743 
-6.2711 
-6.0083 

-7.6783 
-7.5370 
- 7.3649 

-8.8824 
-8.7795 
-8.6589 
-8.5546 
-8.5125 
-8.4437 

-10.0865 
- 10.0087 
-9.9197 
-9.8263 
-9.8152 
-9.7463 

alternating spin $ and spin-1 bonds, we find about -1.2041 J per diamond which is 
more than the ground-state energy of -1.25 J per diamond, which is achieved when 
singlet and triplet bonds are alternated. The ground state has only very short-range 
singlets, with spin correlations restricted to lie in the same diamond and spins on 
different diamonds being completely uncorrelated. The ground state clearly breaks 
translational symmetry with a doubling of the unit cell from one diamond to  two 
diamonds. The two different types of diamond have very different wavefunctions. A 
diamond with a singlet bond has energy -0.75 J ,  whicli all comes from the singlet 
bond itself, the other bonds being uncorrelated. A diamond with a triplet bond has 
energy -1.75 J and has a short-range antiferromagnetic state. The four spins have 
total spin zero and the bond spin points in the opposite direction to the other two 
spins which are parallel in a local triplet state. The quantum fluctuations are huge 
for this state, and yield a larger contribution than the NCel energy of -0.75 J. It is 
this very stable arrangement which is the cause of the loss of long range order, with 
the large quantum fluctuation energy dominating the NCel energy. 
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Figure 4. (a) Finite-size scaling analysis of the energy per diamond of a linear chain 
of diamonds. The lower data sets are with free boundary conditions, the upper three 
with periodic boundary conditions. Curves correspond to the ground state. The rest 
are for the quantum analogue of the classical ground state. The two limit points 
are -1.25005 and -1.2041.l. ( b )  Finitesize scaling analysis of the magnetisation 
fraction for the states of (a). The lowest four data sets are for the ground state, the 
upper four for the quantum analogue to the classical ground state. The former clearly 
tend to zero, the latter remaining unclear. The corresponding analysis for the spin-: 
chain is known to tend to zero logarithmically. Short diagonal magnetisation frac- 
tions are shown for for periodic (*) and free (0) boundary conditions. The system 
is ferrimagnetic, so these curves should not tend to zero: a lower limit of a quarter 
seems natural. Long diagonal magnetisation fractions are shown for periodic (+) 
and free ( x )  boundary conditions. ( c )  Short diagonal bond spin correlations for the 
ground and first excited states of the quantum analogue to the classical ground state 
for a chain of length 8 diamonds and a loop of length 9 diamonds. Symmetric data 
sets are for the loop, showing a spin wave. The other two are for free boundary con- 
ditions, showing a spin spiral. ( d )  As (c), but showing long diagonal spin correlations 
(comments on curves in ( c )  also apply here). 
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Although the ground state has lost long-range order, it is important to realise that 
there is a state which exhibits the correlations that one expects from an unfrustrated 
one-dimensional antiferromagnet. The state with the lowest energy subject to  all its 
bond spins being triplet seems to  exhibit the properties to  be expected from the low- 
spin analogue of the classical ground state. The relevant chain segment states look to 
be converging to  an unsaturated ferromagnet. The total spin is precisely that predicted 
by the classical ferrimagnetic state of i ( N D  - l), and would appear to become long 
range order for the infinite chain. The second correlation of interest is whether or 
not there are residual NCel correlations also present in this state. In order to study 
this issue we have calculated the spin correlation functions for the ground states and 
first excited states of our chains. In figure 4 we present the correlation functions, and 
there is clearly a slowly decaying parallel component. In table 1 and figure 4 we give 
the square of the total spin of the ‘sublattices’ as a fraction of the maximum possible, 
and it is not clear to the order calculated, whether or not the Nkel order survives into 
the infinite chain. The solved example of the infinite chain of identical spin-; spins, 
which exhibits no long-range order and power law decay of correlations, suggests that 
long-range order probably does not survive, but it also suggests that the state still 
probably exhibits most of the behaviour to be expected from a state with NCel order, 
in that correlations extend over long distances and can support gapless ‘spin waves’. 
The correlations presented in figure 4 substantiate this claim, where the excitations 
are seen to  involve long range spirals as is found for the spin-$ chain. 
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Figure 5 .  The lowest two gaps to excitations for the quantum analogue of the 
classical ferrimagnetic ground state. The stars and plusses are for periodic boundary 
conditions and the circles and crosses are for free boundary conditions. This state is 
probably gapless. 

In figure 5 we depict the gap to the first two excited states, when all the bond spins 
in the relevant clusters are constrained to be triplets. The gaps appear to vanish in 
the limit of infinite chain length, suggesting that an infinite chain of alternating spin-i 
and spin-1 atoms is gapless and has behaviour more reminiscent of the spin-; chain 
which is also gapless, than the spin-1 chain which has a gap. It must be borne in mind, 
however, that an analogous treatment for the spin-1 chain can also suggest no gap. 
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The spin-1 chain with free boundary conditions yields two degenerate ground states, 
although with periodic boundary conditions the Haldane gap is observed. The results 
strongly suggest that this system is gapless although the issue remains unresolved. 

2.4. Antiferromagnetic coupling for the honeycomb lattice 

Although we have essentially proved that the chain of diamonds has the ground state 
with bond spins alternating between spin 0 and spin 1, we also believe that the two- 
dimensional honeycomb of diamonds exhibits similar behaviour with four-atom NCel 
ordered clusters which are separated from each other by singlet bond spins. One might 
hope to  be able to  prove this result in a similar manner to the method employed for the 
chain, but the small size of the clusters that we can diagonalise makes such a technique 
dubious. We have performed such calculations on the clusters depicted in figure 6. 
The slightly wider chain clearly has a ground state with no long-range coherence, but 
the honeycomb is still not clear. In order to  convince oneself that this lattice too has 
the ground state with only short-range correlations, a rather different argument needs 
to be employed. 

The cause of our difficulty may be traced to our choice of ‘free’ boundary condi- 
tions. This choice vigorously favours triplet bond spins, since any diamond which has 

Figure 6. The clusters for which we have performed exact diagonalisation analysis. 
(a) The linear chain with both free and periodic boundary conditions; ( b )  the aug- 
mented chain with free boundary conditions; ( c )  the ‘flower’ arrangement; ( d )  the 
honeycomb lattice with periodic boundary conditions. 



10334 M W Long and S Siak 

-0.M 

a disconnected end will have a triplet bond in the ground state. The triangle containing 
the disconnected end has topological degeneracy, and its ground state is achieved with 
both singlet and triplet bond spins. If the bond spin is singlet, then the triangle is 
disconnected from the other spins, whereas if the bond spin is triplet, then there 
is a matrix element connecting it to the other spins which forces it to  be relatively 
stable. The clusters depicted in figure 6(c) are clearly composed of diamonds with 
disconnected ends and the ground states all have triplet bond spins for each diamond. 
One way to  avoid the fact that edge triangles favour triplet bonds spins, is to  use 
boundary conditions which involve no edges. Indeed, the calculations with periodic 
boundary conditions all suggest the ground state with disconnected clusters. 

In fact the ground state is suggested by a special class of eigenstates; those with 
disconnected clusters. If we focus on the atoms which sit on the long diagonals, then 
the clusters are sets of these points which are connected by paths passing only over 
triplet bond spins. The clusters are surrounded by singlet bond spins, which disconnect 
them. The states of interest for comparison, are states where all the points on the 
long diagonals are involved, and further where all the clusters are the same. For these 
states it is easy to calculate the energy gain per diamond, and the crucial point to 
observe, is that all the long diagonal points like to be involved in non-trivial clusters, 
but the larger the cluster the worse the energy per diamond. 

There is one complication in the comparison: that is the diamonds with singlet 
bonds. For any given type of cluster, the number of singlet bonds required to separate 
a plane of such clusters varies. The contribution from the singlet bonds is therefore 
not directly comparable. Fortunately there is a way to compare each cluster directly, 
and further, the comparison has a physical interpretation. 

It is convenient to measure energies from a different zero. The best reference 
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Figure 7. The quantum fluctuation energy per long diagonal site for our various 
clusters. The plusses and crosses are the linear chain with periodic and free boundary 
conditions respectively. The squares are the augmented chain with free boundary 
conditions, the stars are the ‘flowers’ and the circles are the honeycomb lattice with 
periodic boundary conditions. All these clusters are worse than the N6el ordered 
diamond which yields precisely -0.5 J per long diagonal site. 
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is to  compare with an energy of -0.75 J per diamond, rather than the usual zero, 
since then all the diamonds with singlet bonds contribute nothing and we can make a 
direct measure of a cluster’s contribution. Coincidentally, the NCel contribution is also 
-0.75 J, and so we are calculating the quantum fluctuation energy in this calculation. 
The final comparison between different clusters can then be performed by measuring 
these residual energies per long diagonal site, since we are assuming that all such spins 
are involved. The clusters of figure 6 yield the contributions depicted in figure 7 and 
it is clear that a single diamond gains the most energy from quantum fluctuations. 
All the clusters that we have analysed always break up into subclusters of the form 
of those in figure 6 ( c ) ,  and so eigenstates are either higher in energy or contained 
within the presented results. We believe that whatever the geometry or number of 
diamonds, the quantum mechanical ground state finds the spins on the long diagonals 
paired up, with as many diamonds as possible forming the four spin NCel state, and 
all the other bond spins either being singlet, if they are internal, or forming one of 
the clusters depicted in figure 6 ( c )  if they are external. This includes the honeycomb 
lattice arrangement, which has multiply degenerate ground states, two of which are 
depicted in figure 8. It is important to realise that loops constitute a significant change 
in basic topology, and all our clusters with loops also satisfy this hypothesis. 

Figure 8. 
honeycomb lattice. 
unmarked diamonds have a singlet bond spin. 

A pictorial representation of two of the possible ground states for the 
The diamonds marked ‘N’ have the Nee1 state while all the 

When we consider the magnetic coherence inherent in our clusters, we find an 
important fact. Calculations of the sublattice magnetisation suggest that the worse 
the quantum fluctuation energy the stronger the magnetic order. One can view the 
two effects as being in direct competition and the low-energy excitations as being a 
trade off between the two. 

The clusters depicted in figure 6 were chosen to exhibit the way different geo- 
metric considerations affect the quantum fluctuation energy. The most important 
calculations are those for the ‘flower’ arrangements of figure 6(c ) .  As the number of 
‘petals’ is increased, the amount of quantum fluctuation energy per long diagonal site 
in the ground state is reduced. In tessalated structures these configurations will never 
be stable, and the quantum analogue of the classical solution will be further away in 
energy for systems with higher coordination number of diamonds. This indicates that 
higher dimensional systems exhibit only minor remnants of their original dimensional- 
ity and show almost identical behaviour to the one-dimensional chain. A comparison 
between the free and periodic boundary conditions on the chain is also important. The 
loops are clearly relatively stable, and this can be attributed to the fact that there 
is one less long diagonal site to share the NCel energy with. Loops clearly promote 
NCel order, but the fact that the quantum fluctuation energy is reduced as the loops 
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increase means that the ordered state can never be stable. The two-dimensional cal- 
culations suggest that the quantum analogue to the classical ground state is not stable 
for the honeycomb lattice. The fact that each long diagonal site has a coordination 
number of three suggests that the eventual limit for this state will be above the result 
found for the three petal flower, much less stable than the corresponding state for the 
chain. 

The above argument is by no means rigorous, but we find it convincing. 

2.5. A soluble limit with antiferromagnetic coupling 

One point which seems surprising at  first sight, is that the solution that we are sug- 
gesting does not depend on Z,, the coordination number of bond spins for a site 
on a long diagonal. For the chain, Z B  = 2,  while for the honeycomb, Z B  = 3, and 
one consequence of this is that the fraction of singlet bond spins is different for the 
ground states of these two lattices. In order to justify this claim, and to achieve 
further insight into the problem with antiferromagnetic coupling, we now present an- 
other exactly solvable geometry. The problem we consider is that of a collection of 
diamonds which all have identical long diagonal spins. This pair of spins then want to 
be antiparallel to each and every bond spin and the complication of the general case, 
where the two long diagonal spins have different connecting bond spins and conflicting 
directions to point in, is avoided. 

The Hamiltonian for this case is simply 

where Sil and Sj2 denote the spins on the long diagonals. This expression may be 
rewritten as a sum of the squares of the spin operators 

which are all conserved quantities. If we set the total spin of the sum of the bond 
spins to be S,, then provided that Sx 2 2S, the first two terms are minimised by 
letting Si, and Si2 be parallel to each other and antiparallel to the sum of the bond 
spins, namely CB S E .  The energy then reduces to 

(2.17) J E = -2JS(Sx + 1) + C S B ( S B  + 1) - JN,S(S + 1) 
B 

This energy is clearly minimised by choosing S, to be the maximum allowable for a 
given choice of S E ,  namely S, = CB S E ,  from which we deduce that 

(2.18) 
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which must finally be minimised over integer values of S E ,  namely 0 5 SE 5 2 s .  It 
is easy to  see that SE = 2 s  or 2 s  - 1 minimises (2.18) to  yield a final ground-state 
energy of 

E = - 3 J N D S 2  - 2 J S  (2.19) 

where the ground state is multiply degenerate with each bond spin being either 2 s  or 
2 s  - 1 and all such spins being both parallel to each other and antiparallel to  the long 
diagonal spins. This result is true provided that the total spin of the sum of bond 
spins, S,, is greater than or equal to the total spin on the long diagonal, 2 s .  The 
first term is simply the Nkel contribution and so the second term corresponds to the 
quantum correction attributable solely to the fluctuations. This particular geometry 
may be considered the most favourable to Nkel order, since there is no conflict of 
interests for the long diagonal spins. For this case the short-range correlation state 
is degenerate with the higher bond spin states, and only awaits a few more distant 
diamonds in order to  become stable. The simplest periodic cluster depicted in figure 6 
is an example of this geometry with 2, = ND = 3. The degeneracy found for this 
case is an example of our result and the larger clusters then show the stabilisation of 
the required ground state. 

One interpretation of these results is, that quantum mechanically, S, = 2s or 
2s - 1 are both energetically equivalent, provided that the local NCel order for the 
interaction with the long diagonal spins is achieved. The effect of quantum fluctuations 
is to stabilise the state with the lowest total spin on a local level. For spin-4 systems, 
all the long diagonal spins become tied into four-atom Nkel states, which have zero 
total spin and triplet bond spins, in order to achieve the NCel order. All other bond 
spins are zero, achieving the lowest total spin on a local level. 

Each long diagonal spin gains the maximum quantum fluctuation energy when in 
interaction with only one large bond spin. It can be chosen to  have more large bond 
spins, provided that it is coherent with all the spins at the other ends of the long 
diagonals, an almost impossibly difficult constraint to achieve. 

Our next major task is to think about excitations in these systems and to try to 
deduce the quantum numbers of the excitations and whether or not they are gapped. 

2.6. The excitation spectrum 

The excitation spectrum of all the possible diamond geometries exhibits similar be- 
haviour, and it suffices to study only the chain of diamonds in order to deduce the 
basic physical picture. As might be expected from the classical limit, the changes in 
bond spin magnitudes remain the lowest energy modes, and constitute the low tem- 
perature excitation spectrum. Unlike the classical limit, where changes in bond spin 
magnitudes were degeneracies, now a change in bond spin involves a loss in quantum 
fluctuation energy. The discrete short-range nature of the correlations forces these 
losses to be discrete, and we find a g a p  to the lowest lying excitation. 

The lowest lying excitations may be chosen to be localised in real space. If we 
use the representation where all the squares of bond spins are diagonal, then the 
excitations are restricted to sit on the bond spins which are excited from the ground 
state configuration, together with any triplet bond spin diamond which happens to 
be connected to  them. The excitations are therefore simply isolated clusters with 
modified spin configurations, and the energies quoted in table 1 readily provide the 
low-energy excitation spectrum. 
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The physical interpretation of the excitations is surprising and at  first sight seems 
unphysical. An excitation corresponds to a finite region of the system for which the 
classical order has been reinstated. At first sight the excitations have more order 
than the ground state, and the usual view of order being found in the ground state 
which is destroyed as the temperature is increased seems reversed. The resolution of 
this ‘paradox’ is that for this system, magnetic order does not mean lower energy. 
Quantum fluctuations involve energy even at  zero temperature; zero-point motion. 
The excitations in the system involve a gain in Nkel ordering energy but a larger 
loss in quantum fluctuation energy. The spin correlations between spins on different 
diamonds increase at first as the temperature rises. The disorder which is physically 
necessary is restricted initially to the loss of the non-magnetic order associated with 
the regular alternation of types of diamonds. 

The lowest energy excitation is seen to be an isolated pair of triplet bonds (TT), 
which from the five diamond cluster which splits up into two, is seen to reside at energy 
0.1185 J each. The most interesting aspect to this excitation, is that it has topological 
properties. For the linear chain, there is a broken symmetry (akin to Peierls distorted 
polyacetylene) and two degenerate ground states. A phase boundary between these 
two ground states constitutes an excitation with a conserved topological quantum 
number. For the present system this excitation, which is usually called a soliton, 
is precisely the pair of excited triplet bonds. In order for the topological quantum 
number to be conserved, these objects must be created and destroyed in pairs, and 
so in most experiments the observed gap to such excitations would be 0.237 J ,  and 
two would be excited. The quantum numbers of a single excitation are zero charge 
and spin !j, and therefore two can have either spin 0 or 1 and could be excited with a 
non-magnetic probe. Although such states might be hard to find with spectral probes, 
the single soliton gap might be expected to play the dominant role in the low-energy 
thermodynamics. 

The lowest lying non-topological excitation involves a three diamond cluster and 
finds the central singlet bond being excited to a triplet, forming a three diamond long 
‘ferrimagnetic’ state. The excitation has total spin 1 and so can only be excited by a 
magnetic probe, but at 0.1808 J ,  it would be excited before two topological excitations. 
The remaining low lying excitations of the chain are ennumerated in table 2. 

The honeycomb lattice exhibits all the excitations found in the linear chain, to- 
gether with two types of excitations peculiar to the two-dimensional characteristics. 
The lowest lying excitation involving the three diamond cluster of figure 6(c), is total 
spin 1 and is not topological, although it does require the reorganisation of the correla- 
tions on at least one loop. At energy 0.2426 J ,  it may be relevant at low temperatures. 
The other new excitation of some interest is that involving a six diamond loop. This 
excitation of spin 3 at energy 0.2746 J may also play a role at low temperatures, and 
is the quantum analogue of the classical ferrimagnet restricted to the loop. 

2.7. Diamonds composed of span-1 atoms 

The next question we found of interest was: is the spin-$ system truely different from 
the higher spin systems, or does a transition occur at  some higher value of spin? In 
order to  gain some insight into this problem, we performed some cluster calculations 
on some spin-1 systems. Our motivation was analagous to that for spin f and the 
corresponding results will be more fully analysed at a later date. 

First let us summarise the predictions of our exactly soluble geometries and our 
conjectures. The system with most bonds being ferromagnetic suggests that all the 
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Table 2. The low-energy excitations of our geometries together with their quantum 
numbers. 

Bond Total Topological 
ND spins spin quantum No Energy 

Linear chain 

2 
3 
4 
5 
6 
7 
8 
6 
7 
5 
8 
4 
8 
7 
6 
3 
7 
7 
5 

TT 
TTT 
TTTT 
TTTTT 
TTTTTT 
TTTTTTT 
TTTTTTTT 
TTTTTT 
TTTTTTT 
TTTTT 
TTTTTTTT 
TTTT 
TTTTTTTT 
TTTTTTT 
TTTTTT 
TTT 
TTTTTTT 
TTTTTTT 
TTTTT 

112 1 
1 0 
312 1 
2 0 
512 1 
3 0 
712 1 
312 1 
2 0 
1 0 
512 1 

312 1 
1 0 

0 0 
2 0 
0 0 
0 0 

112 1 

112 1 

0.1185 
0.1808 
0.2295 
0.2757 
0.3217 
0.3676 
0.4135 
0.4630 
0.4705 
0.4789 
0.4913 
0.5366 
0.5803 
0.5911 
0.6351 
0.6594 
0.6954 
0.7375 
0.7417 

Honeycomb 

3 TTT 1 0 0.2426 
6 TTTTTT 3 0 0.2746 
4 TTTT 312 1 0.2842 

bonds are expected to be either S, = 1 or 2 in the absence of quantum fluctuations. 
The geometry with only two long diagonal sites suggests that both S, = 1 and 2 will 
yield the same amount of quantum fluctuation energy, provided that the long diagonal 
spins see coherent bond spins. Finally we are conjecturing that spin fluctuations 
stabilise the lowest value of the spin locally. 

The energy scale for the fluctuations is very much smaller than that for spin 4. To 
our surprise finite-size scaling suggests that for the chain, the analogue of the classical 
ground state is also the quantum ground state. We have no understanding of this 
result which further suggests that spin-1 systems can behave in anomalous ways. 

2.8. The  quantum analogue of classical spin waves 

We finally consider the quantum analogue of the classical spin waves. There seems a 
general belief that including spin waves into a classical description yields an acceptable 
description of the quantum system, including even zero-point motion. 

In figure 9 we plot the lowest lying spin-wave branch calculated from our finite 
linear chain of diamonds with periodic boudary conditions. These excitations do not 
constitute the lowest lying excitations, since it is cheaper to create many spin-waves 
at  small wavevectors due to  the quadratic nature of the dispersion. The excitations 
presented are the lowest energy excitations subject to the constraint that there is a 
change in total spin of only one. 
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Figure 9. The lowest lying spin wave branch calculated from our finite loops. The 
dispersion is very similar to that predicted by the classical limit and depicted in 
figure 2(a). 

The dispersion depicted in figure 9 is direckly comparable with the classical spin 
wave spectrum of figure 2(a )  and agrees quite accurately when the curve is renor- 
malised by the factor of S = 3. It seems likely that the quantum analogue of the 
classical ground state is well described by the classical ground state with classical 
spin waves included. 

3. Conclusions 

The physical ideas suggested by this article are conceptually simple. The normal 
ground state for Heisenberg magnets is a state with long-range magnetic coherence, 
even for low-spin systems. There are other types of spin state with quite different 
physics, but these states must be stabilised by some other phenomenon. When the 
energy gain from long-range magnetism is severely weakened by topological frustra- 
tion, then for low-spin systems, quantum fluctuations can stabilise a new kind of 
ground state without any long range order. Although we have only studied topologi- 
cal ways of destroying magnetism in this paper, we believe that charge carriers which 
are strongly coupled to the spin system can also destroy the magnetism and replace 
it with a state very similar to  that presented in this article, a more common cause of 
strong-coupling paramagnetism in nature. 

The ground states stabilised by quantum fluctuations in this article exhibit several 
different characteristics from the classical magnetically ordered states, and we believe 
that the basic properties are generic to the class of strong-coupling paramagnets and 
are indicative of very special and interesting physical behaviour. The spin correlations 
decay very rapidly in our calculations, vanishing between spins on distinct diamonds. 
The precipitous decay is probably special to our model, but we expect exponential 
decay in less contrived systems. There is a gap to the first excitation in the system, 
unlike the classical ordered states, and we believe that this too is generic. The excita- 
tions are localised and small, in contrast to the long-range mobile spin waves. We also 
find that the excitations are spin i, unlike the spin-1 bosons which make classical spin 
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waves. We believe that these exotic excitations are also generic to  strong-coupling 
paramagnets, although the topological aspects may be restricted t o  the present case. 

Although the spin-4 systems are quite different to  the classical limit, with quan- 
tum fluctuations stabilising the strong-coupling paramagnet over the magnet by an 
energy of about 0.04 J per diamond and with local excitations about 0.2 J away, the 
corresponding spin-1 systems appear to  be well described by the classical ideas, with 
the excitations only removed from the ground state on an energy scale of 0.01 J. The 
present ideas seem only likely to  be relevant to  spin-4 systems. 

The crucial feature of the present system is that  the quantum fluctuation energy of 
a long diagonal site is optimised when it pairs up in a triplet with one other such site, 
and when the resulting triplet also forms a local singlet with a single bond spin. This 
state is the spin zero ground state of an isolated diamond. Whatever the configuration 
or dimensionality of diamond connectivity, we believe that the long diagonal sites will 
pair off, as far as they are able, leaving all the remaining bond spins as singlets. The 
only proviso is that  any diamond with a disconnected end will have a triplet bond 
spin, yielding the possibility of some of the ‘flower’ arrangements of figure 6 ( c )  in the 
ground state. 

The ground state has only short-range magnetic order with spin correlations re- 
stricted t o  lie within individual diamonds. Surprisingly, as the temperature is raised, 
the spin correlations initially increase in range. 

The lowest lying excitation is a topological soliton for both the one dimensional 
chain and the honeycomb lattice, and exciting these solitons is associated with the 
loss of the unit cell doubling order. 

Finally we would like to point out that quantum fluctuations and magnetic order 
are in competition in general and that the quantum fluctuation energy dominates for 
our geomety. The excitations exhibit this competition involving a gain in ordering 
energy but a larger loss in quantum fluctuation energy. This effect has recently been 
observed in the spin-1 chain [9]. 

Note a d d e d  in proof. Due to the excessive length of this article, the charge motion aspects have been 
relegated to a subsequent article. The charge motion is also exactly soluble at the one hole level, and 
is much more interesting at the many hole level than the Heisenberg problem. 
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